首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2928篇
  免费   650篇
  国内免费   478篇
化学   1358篇
晶体学   30篇
力学   350篇
综合类   4篇
数学   517篇
物理学   1797篇
  2024年   5篇
  2023年   113篇
  2022年   154篇
  2021年   173篇
  2020年   200篇
  2019年   140篇
  2018年   148篇
  2017年   154篇
  2016年   137篇
  2015年   166篇
  2014年   224篇
  2013年   266篇
  2012年   263篇
  2011年   282篇
  2010年   234篇
  2009年   234篇
  2008年   172篇
  2007年   174篇
  2006年   186篇
  2005年   105篇
  2004年   56篇
  2003年   67篇
  2002年   50篇
  2001年   74篇
  2000年   46篇
  1999年   85篇
  1998年   52篇
  1997年   10篇
  1996年   10篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   2篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1963年   1篇
  1957年   3篇
排序方式: 共有4056条查询结果,搜索用时 16 毫秒
51.
《中国化学快报》2023,34(9):108156-51
Hydrogen evolution from water electrolysis has become an important reaction for the green energy revolution. Traditional precious metals and their compounds are excellent catalysts for producing hydrogen; however, their high cost limits their large-scale practical application. Therefore, the development of affordable electrocatalysts to replace these precious metals is important. Transition metal phosphides(TMPs) have shown remarkable performance for hydrogen evolution and garnered considerable ...  相似文献   
52.
《中国化学快报》2023,34(9):108157
This work reported the lanthanide ion (Gd3+) doped tungsten trioxide (Gd-WO3) nanocrystal for remarkable promoted photocatalytic degradation of organic pollutants and simultaneous in-situ H2O2 production. With doped lanthanide ion (Gd3+), Gd-WO3 showed a much broad and enhanced solar light absorption, which not only promoted the photocatalytic degradation efficiency of organic compounds, but also provided a suitable bandgap for direct reduction of oxygen to H2O2. Additionally, the isolated Gd3+ on WO3 surface can efficiently weaken the *OOH binding energy, increasing the activity and selectivity of direct reduction of oxygen to H2O2, with a rate of 0.58 mmol L−1 g−1 h−1. The in-situ generated H2O2 can be subsequently converted to OH based on Fenton reaction, further contributed to the overall removal of organic pollutants. Our results demonstrate a cascade photocatalytic oxidation-Fenton reaction which can efficiently utilize photo-generated electrons and holes for organic pollutants treatment.  相似文献   
53.
Cyclohexane epoxide, which contains highly active epoxy groups, plays a crucial role as an intermediate in the preparation of fine chemicals. However, controlling the epoxidation pathway of cyclohexene is challenging due to issues such as the allylic oxidation of cyclohexene and the ring opening of cyclohexane epoxide during the cyclohexene epoxidation process to form cyclohexane oxide. This review focuses on the structure-activity relationships and synthesis processes of various heterogeneous transition metal-based catalysts used in cyclohexene epoxidation reactions, including molybdenum(Mo)-based, tungsten(W)-based, vanadium(V)-based, titanium(Ti)-based, cobalt(Co)-based, and other catalysts. Initially, the mechanism of cyclohexene epoxidation by transition metal-based catalysts is examined from the perspective of catalytic active centers. Subsequently, the current research of cyclohexene epoxidation catalysts is summarized based on the perspective of catalyst support. Additionally, the differences between alkyl hydroperoxide, hydrogen peroxide (H2O2), and oxygen (O2) as oxidants are analyzed. Finally, the main factors influencing catalytic performance are summarized, and reasonable suggestions for catalyst design are proposed. This work provides scientific support for the advancement of the olefin epoxidation industry.  相似文献   
54.
Three-dimensional (3D) heterostructured molybdenum disulfide (MoS2) is used as base materials for aniline monomer in situ polymerization on its surface. It is found that the aniline addition has a remarkable effect on the energy storage of the final compounds due to the improvement of the conductivity and structure stability combined with the synergistic effect between the two types of species. The optimal compound of PANI@MoS2-150 not only shows a high capacitance value of 801.4 F ⋅ g−1 at a current density of 0.5 A ⋅ g−1 but also provides a high retention rate of 77.4 % after 10,000 cycles. The capacitance fading may be due to the increase of the internal resistance analyzed by EIS. Furthermore, a flexible symmetric supercapacitor based on PANI@MoS2-150 has also been fabricated and the specific capacitance reaches 105 F ⋅ g−1 at a current density of 1 A ⋅ g−1. Impressively, the capacitance retention is larger than 100 % undergoing 10,000 cycles. Besides, the highest energy density of 21 Wh ⋅ kg−1 was obtained. Additionally, the fabricated symmetric supercapacitor demonstrates excellent flexibility.  相似文献   
55.
Recently, we confirmed that the 95% ethanol-extracted fraction of Codonopsis Radix, which contains several triterpenoids and sterols, possesses pharmacological activities. However, due to the low content and diverse types of triterpenoids and sterols, their similar structures, lack of ultraviolet absorption, and difficulty in obtaining controls, few studies have so far assessed their contents in Codonopsis Radix. We accordingly constructed an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry technique for the simultaneous quantitative determination of 14 terpenoids and sterols. Separation was performed on the Waters Acquity UPLC HSS T3 C18 column (100 × 2.1 mm, 1.8 μm) with 0.1% formic acid (A) and 0.1% formic acid in methanol (B) as mobile phase under gradient elution. The determination coefficients for each of the matrix calibration curves were ≥0.9925. The average recovery ranged from 81.25% to 118.05%, with relative standard deviations of <4%. The contents of 14 components in 23 batches were quantified and further analyzed through chemometrics. Linear discriminant analysis can distinguish sample varieties. The quantitative analysis method can accurately determine the contents of 14 components and thereby provide the chemical basis for the quality control of Codonopsis Radix. It also could be a valuable approach for the classification of different Codonopsis Radix varieties.  相似文献   
56.
Xu  Wenhui  Chen  Yuhong  Zhao  Yingjie  Zhang  Meiling  Tian  Ranran  Zhang  Cairong 《Structural chemistry》2021,32(4):1517-1527
Structural Chemistry - N-doped graphdiyne (N-graphdiyne) is a new kind of alkynyl carbon material whose structure resembles graphdiyne. This study describes the Mn-modified N-graphdiyne...  相似文献   
57.
The low cost β-zeolite and ethylenediamine modified β-zeolite (EDA@β-zeolite) were prepared by self-assembly method and used for Cu(II) removal from contaminated aqueous solution. Removal ability of β-zeolite toward Cu(II) was greatly improved after ethylenediamine (EDA) modification, the removal performance was greatly affected by environmental conditions. XPS results illustrated that the amide group played important role in the removal process by forming complexes with Cu(II). The EDA@β-zeolite showed desirable recycling ability. The finding herein suggested that the proposed composite is a promising and suitable candidate for the removal of Cu(II) from contaminated natural wastewater and aquifer.  相似文献   
58.
Silicon oxide (SiOx)-based anodes have aroused great interest as the most promising alternative anode in the practical application of high-performance lithium-ion batteries. However, the electrochemical performance is inhibited because of the large volume change, and the electrode structure deteriorates during the cycling process, which hinders their practical application. In this article, a novel fabrication method for the synthesis of high-performance SiOx@C@Graphite composites is presented. SiOx particles are anchored on the graphite surface by chemical vapor deposition and compression molding. This structure makes up the shortcomings of poor electrical conductivity and poor bonding strength between SiOx and graphite particles. It is beneficial to form a stable solid electrolyte interface and helps to maintain the structural integrity of electrode materials. As a result, the synthetic SiOx@C@Graphite anode shows a high reversible capacity (2698.8 mA h), excellent cycle stability (about 76.9% capacity retention for 500 cycles) and a superior rate ability. Our research hopes to provide a new idea for improving the bonding strength of the surface coating.  相似文献   
59.
A hydrophilic interaction liquid chromatography (HILIC) method was developed to measure the composition of humic substances from river, reservoir, and treated wastewater based on their physicochemical properties. The current method fractionates the humic substances into four well-defined groups based on parallel analyses with a neutral and a cationic HILIC column, using mobile phases of varied compositions and pH. The results indicate that: (i) the proportion of carboxylic acids in the humic substances from terrestrial origins is less than half of that from treated wastewater (Jeddah, KSA), (ii) a higher content of basic compounds was observed in the humic substances from treated wastewater and Ribou Reservoir (Cholet, France) than in the sample from Loire River (France), (iii) a higher percentage of hydrophobic macromolecules were found in the humic substances from Loire River than in the other samples, and (iv) humic substances of treated wastewater contained less ionic neutral compounds (i.e., pKa 5–9) than the waters from terrestrial origins. The physicochemical property disparity amongst the compounds in each humic substances sample was also evaluated. The humic substances from the lightly humic Loire river displayed the highest disparity, whereas the highly humic Suwannee river (Georgia, USA) showed the most homogeneous humic substances.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号